Abstract

In many engineering applications, estimation of covariance and precision matrices is of great importance, helping researchers understand the dependency and conditional dependency between variables of interest. Among various matrix estimation methods, the modified Cholesky decomposition is a commonly used technique. It has the advantage of transforming the matrix estimation task into solving a sequence of regression models. Moreover, the sparsity on the regression coefficients implies certain sparse structure on the covariance and precision matrices. In this chapter, we first overview the Cholesky-based covariance and precision matrices estimation. It is known that the Cholesky-based matrix estimation depends on a prespecified ordering of variables, which is often not available in practice. To address this issue, we then introduce several techniques to enhance the Cholesky-based estimation of covariance and precision matrices. These approaches are able to ensure the positive definiteness of the matrix estimate and applicable in general situations without specifying the ordering of variables. The advantage of Cholesky-based estimation is illustrated by numerical studies and several real-case applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call