Abstract

Sonobuoy fields, comprising a network of sonar transmitters and receivers, are used to find and track underwater targets. For a given environment and sonobuoy field layout, the performance of such a field depends on the scheduling, that is, deciding which source should transmit, and which waveform should be transmitted at any given time. In this paper, we explore the choice of cost function used in myopic scheduling and its effect on tracking performance. Specifically, we consider 5 different cost functions derived from the predicted error covariance matrix of the track. Importantly, our cost functions combine both positional and velocity covariance information to allow the scheduler to choose the optimum source-waveform action. Using realistic multistatic sonobuoy simulations, we demonstrate that each cost function results in a different choice of source-waveform actions, which in turn affects the performance of the scheduler. In particular, we show there is a trade-off between position and velocity error performance such that no one cost function is superior in both.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call