Abstract
It is known that the autocorrelation function of a stationary discrete-time scalar process can be uniquely characterized by the so-called partial autocorrelation function, which is a sequence of numbers less or equal to one in magnitude. We show here that the matrix covariance function of a multivariate stationary process can be characterized by a sequence of matrix partial correlations, having singular values less than or equal to one in magnitude. This characterization can be used to extend to the multivariate case the so-called maximum entropy spectral analysis method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.