Abstract
We present the covariance analysis of two successful nuclear energy density functionals (EDFs), (i) a non-relativistic Skyrme functional built from a zero-range effective interaction, and (ii) a relativistic nuclear EDF based on density dependent meson–nucleon couplings. The covariance analysis is a useful tool for understanding the limitations of a model, the correlations between observables and the statistical errors. We show, for our selected test nucleus Pb, that when the constraint on a property A included in the fit is relaxed, correlations with other observables B become larger; on the other hand, when a strong constraint is imposed on A, the correlations with other properties become very small. We also provide a brief review, partly connected with the covariance analysis, of some instabilities displayed by several EDFs currently used in nuclear physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics G: Nuclear and Particle Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.