Abstract

The goal of this study was the in vivo evaluation of nanoporous titanium (Ti) implants bearing a covalently linked surface hyaluronan (HA) layer. Implant surface topography and surface chemistry were previously evaluated by scanning electron microscopy and X-ray photoelectron spectroscopy. Results showed that the surface modification process did not affect surface topography, yielding a homogeneously HA-coated nanotextured implant surface. In vivo evaluation of implants in both cortical and trabecular bone of rabbit femurs showed a significant improvement of both bone-to-implant contact and bone ingrowth at HA-bearing implant interfaces at 4 weeks. The improvement in osteointegration rate was particularly evident in the marrow-rich trabecular bone (bone-to-implant contact: control 22.5%; HA-coated 69.0%, p < 0.01). Mechanical testing (push-out test) and evaluation of interfacial bone microhardness confirmed a faster bone maturation around HA-coated implants (Bone Maturation Index: control 79.1%; HA-coated 90.6%, p < 0.05). Suggestions based on the biochemical role of HA are presented to account for the observed behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call