Abstract
Cobalt chromium (CoCr) alloy is widely used in orthopedic implants but its functional longevity is susceptible to inflammation related complications. Reduction of the development of chronic inflammation on the biomaterial surface would enhance direct bone-implant bonding and improve implant survival and long-term results. The BMP-7 peptide was derived from the knuckle epitope of bone morphogenic protein-7 (BMP-7) and was conjugated via a cysteine amino acid at the N-terminus. Mouse RAW 264.7 monocytes/macrophages were seeded on the CoCr substrates and inflammation was induced via lipopolysaccharide (LPS) challenge. The effects of BMP-7 peptide on inflammation were evaluated by measuring the expression of inflammatory markers like toll-like receptor-4 (TLR-4), tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1). ELISA and qPCR assays were used to study the inflammatory signals. BMP-7 signaling pathway activation was shown by the presence of phosphorylation of Smad1/5/8. Utilizing the reactivity of polydopamine films to immobilize BMP-7 peptide onto metal substrates may provide a promising approach for applications in situations where reduction of inflammation around implants would be beneficial in improving surgical outcome, bone healing, and implant integration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.