Abstract

Azide–alkyne “click” cyclization was used to prepare a series of polymerizable acetoacetate monomers containing a 1,2,3-trizolium ionic liquid group. The monomers were subsequently polymerized using base-catalyzed Michael addition chemistry, producing a series of covalently crosslinked 1,2,3-triazolium poly(ionic liquid) (TPIL) networks. Structure–activity relationships were conducted to gauge how synthetic variables, such as counteranion ([Br], [NO3], [BF4], [OTf], and [NTf2]), and crosslink density (acrylate/acetoacetate ratio) effected thermal, mechanical, and conductive properties. TPIL networks were found to exhibit ionic conductivities in the range of 10–6–10–9 S/cm (30 °C, 30% relative humidity), as determined from dielectric relaxation spectroscopy, despite their highly crosslinked nature. Temperature-dependent conductivities demonstrate a dependence on polymer glass transition, with free-ion concentrations impacted by various ions’ Lewis acidity/basicity and ion mobilities impacted by freely mobile anion size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call