Abstract

Advanced two-dimensional nanosheets that promote the dynamic transportation and storage capacity of ions are significant for high-performance electrochemical capacitors (ECs). However, such materials often possess a low energy density. We have developed an ordered heteroarchitecture of molybdenum disulfide-carbon nanotubes (MoS2 -CNTs) in which CNTs are vertically grafted within a MoS2 framework by C-Mo covalent bonds. Benefiting from this in situ vertical bridge, high-speed interlaminar conductivity, unimpeded ion-diffusion channels and sufficient pseudocapacitive reactivity, the MoS2 -CNTs presents ultralarge capacitance (5485 F g-1 ) and good structural stability in potassium hydroxide electrolyte. Moreover, the all-unified solid-state flexible ECs obtained through direct-write printing construction deliver high energy density (226 mWh g-1 ), good capacitance (723 F g-1 ) and stable high/low-temperature operating ability, which can power a wearable health-monitoring device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call