Abstract

In this work the covalent surface modification of MXene flakes (Ti3C2Tx) was proposed for the increasing of the performance of subsequently created symmetric supercapacitor. Covalent surface modification was performed with utilization of diazonium salts (hydrophobic or hydrophilic) and plasmon-assisted photochemistry. Applied procedure allows to block the reactive (weak and/or catalytically active) sites on flakes surface and increase the flakes interplanar spacing, both enhancing the functionality of an MXene-based supercapacitor. Especially pronounced positive effect gives the surface modification with hydrophilic chemical moieties. In particular, we observed increase of supercapacitance from 197 to 284 F g−1 in acidic and from 86 to 142 F g−1 in alkaline conditions for flakes grafted with –C6H4–COOH chemical moieties at scan rate 20 mV/s. The flakes grafted with hydrophobic chemical moieties allow to achieve almost constant value of supercapacitance for different speed of charge discharge. In addition, the surface grafting prevents the supercapacitor degradation and decelerates the spontaneous discharge in open circuit mode. These results suggest strategy for further improvement of MXene-based supercapacitors as energy storage device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.