Abstract

AbstractCovalent chemical reactions to modify aggregated proteins are rare. Here, we reported covalent Michael addition can generally occur upon protein aggregation. Such reactivity was initially discovered by a bioinspired fluorescent color‐switch probe mimicking the photo‐conversion mechanism of Kaede fluorescent protein. This probe was dark with folded proteins but turned on red fluorescence (620 nm) when it non‐covalently bound to misfolded proteins. Supported by the biochemical and mass spectrometry results, the probe chemoselectively reacted with the reactive cysteines of aggregated proteins via covalent Michael addition and gradually switched to green fluorescence (515 nm) upon protein aggregation. Exploiting this Michael addition chemistry in the malachite green dye derivatives demonstrated its general applicability and chemical tunability, resulting in different fluorescence color‐switch responses. Our work may offer a new avenue to explore other chemical reactions upon protein aggregation and design covalent probes for imaging, chemical proteomics, and therapeutic purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.