Abstract

The selective temperature-controlled surface-assisted synthesis of covalent, organometallic, and halogen-bonded nanomeshes based on a 3,5,3″,5″-tetrabromo-para-terphenyl (TBrTP) precursor was studied with scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (STM) in ultrahigh vacuum. Vapor deposition of TBrTP onto Cu(111) at 90 K leads to a highly ordered organic monolayer stabilized by Br···Br and Br···H intermolecular bonds between the intact T-type assembled TBrTP molecules, as confirmed by density functional theory (DFT) calculations. Annealing the monolayer to 300 K results in C–Br bond scission and the formation of C–Cu–C bonds, which link adjacent para-terphenyl fragments such that stable organometallic frameworks are formed. Pore sizes correlate with the number of enclosed adatoms (most likely Br atoms), which presumably play a size-determining role during the process of the pore formation. Larger islands of the organometallic framework are obtained by deposition of TBrTP onto the copper surface held at 460 K. A further increase in sample temperature to 570 K during deposition gives rise to the formation of covalent organic frameworks with pores of tetragonal and trigonal symmetry. The covalent nanostructures are not completely planar, but contain phenylene units which are tilted relative to the surface plane, most likely due to steric hindrance between the C–H bonds inside the pores. Comparison of the three different bonding regimes reveals that the degree of long-range order correlates inversely with the strength of the bonds between the building blocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.