Abstract

Traditional piperazine-based polyamide membranes usually suffer from the intrinsic trade-off relationship between selectivity and permeance. The development of macrocycle membranes with customized nanoscale pores is expected to address this challenge. Herein, we introduce 1,4-diazacyclohexane (2N), 1,4,7-triazacyclononane (3N), and 1,4,8,11-tetraazacyclotetradecane (4N) as molecular building blocks to construct the nanoarchitectonics of polyamide membranes prepared from interfacial polymerization (IP). The permeance of covalent organic network membranes follows the trend of 4N-TMC > 3N-TMC > 2N-TMC, while the molecular weight cutoff (MWCO) also follows the same trend of 4N-TMC > 3N-TMC > 2N-TMC, according to their nanopore size of the membranes. The microporosity, orientation, and surface chemistry of covalent organic network membranes can be rationally designed by macrocycle building units. The ordered nanoarchitectonics allows the membranes to attain an excellent performance in graded molecular sieving. Importantly, the novel covalent organic network membranes with tunable nanoarchitectonics prepared from macrocycle building units exhibited high water permeance (32.5 LMH/bar) and retained long-term stability after 100 h of test and bovine serum albumin fouling. These results reveal the enormous potential of 3N-TMC and 4N-TMC membranes in saline textile wastewater treatments and precise molecular sieving.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.