Abstract

Electrochemical hydrogen compression (EHC) is an emerging energy conversion technology. Proton exchange membranes (PEMs) with high proton conductivity and high mechanical strength are highly required to meet the practical requirements of EHC. Herein, ionic covalent organic frameworks (iCOFs) with tunable side chains were synthesized and introduced into the sulfonated poly (ether ether ketone) (SPEEK) matrix to fabricate hybrid PEMs. In our membranes, the rigid iCOFs afford ordered proton conduction channels, whereas the flexible side chains on iCOFs afford abundant proton conduction sites, adaptive hydrogen bonding networks, and high local density short hydrogen bonds for highly efficient proton transport. Moreover, the hydrogen bond interactions between the side chains on iCOFs and the SPEEK matrix enhance the mechanical stability of membranes. As a result, the hybrid PEM acquires an enhanced proton conductivity of 540.4 mS cm-1 (80 °C, 100%RH), a high mechanical strength of 120.41 MPa, and a superior performance (2.3 MPa at 30 °C, 100%RH) in EHC applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call