Abstract

The incorporation of homogeneous catalysts for CO2 reduction into extended frameworks has been a successful strategy for increasing catalyst lifetime and activity, but the effects of the linkers on catalysis are underexplored. In this work, a novel rhenium bipyridine complex was synthesized for the purpose of designing a covalent-organic framework (COF) with both metalloporphyrin and metal bipyridine moieties. Investigation of the rhenium complex as a homogeneous catalyst shows a faradaic efficiency of 81(8)% for the electrocatalytic conversion of CO2 to CO upon the addition of methanol as the proton source. Treatment of the rhenium complex with tetra(4-aminophenyl)porphyrin under Schiff base conditions produces the desired COF, as indicated by powder X-ray diffraction (PXRD) studies. Metalation of the porphyrins was accomplished through postsynthetic modification with CoCl2 and FeCl3 metal precursors. The retention of the PXRD peaks and appearance of new Co and Fe peaks in the corresponding X-ray photoelectron spectroscopy spectra suggest the successful incorporation of a secondary metal site into the framework. Cyclic voltammetry measurements display increases in current densities when the atmosphere is changed from N2 to CO2. Controlled potential electrolyses show that the cobalt-postmetalated COF has the highest activity toward CO2 reduction, reaching a faradaic efficiency of 18(2)%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.