Abstract
The rise of electronic societies is driving a surge in the demand for energy storage solutions, particularly in the realm of renewable energy technologies like batteries, which rely heavily on efficient electrode materials and separators. As an answer to this necessity, Covalent Organic Frameworks (COFs) are emerging and a highly intriguing class of materials, garnering increased attention in recent years for their extensive properties and possible applications. This review addresses the remarkable versatility and boundless potential of COFs in scientific fields, mainly focusing on multivalent metal ion batteries (MMIBs), which include AIB (Aluminium‐ion batteries), MIB (Magnesium‐ion battery), CIB (Calcium‐ion battery), and ZIB (Zinc‐ion battery), as both electrode materials and separators across a spectrum of battery technology. Inclusive of their approaches, merits, and reaction mechanisms, this review offers an extensive summary of COFs concerning multivalent ion batteries. By providing a rigorous analysis of COF attributes, electrochemical behaviour, and methodologies, our explanation contributes to a deeper understanding of their potential in advancing battery technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.