Abstract

Photoelectrochemical (PEC) organic transformations occurring at anodes are a promising strategy for circumventing the sluggish kinetics of the oxygen evolution reaction. Here, we report a free radical-mediated reaction instead of direct hole transfer occurring at the solid/liquid interface for PEC oxidation of benzyl alcohol (BA) to benzaldehyde (BAD) with high selectivity. A bismuth vanadate (BiVO 4 ) photoanode coated with a 2,2′-bipyridine–based covalent organic framework bearing single Ni sites (Ni-TpBpy) was developed to drive the transformation. Experimental studies reveal that the reaction at the Ni-TpBpy/BiVO 4 photoanode followed first-order reaction kinetics, boosting the formation of surface-bound ·OH radicals, which suppressed further BAD oxidation and provided a nearly 100% selectivity and a rate of 80.63 μmol hour −1 for the BA-to-BAD conversion. Because alcohol-to-aldehyde conversions are involved in the valorizations of biomass and plastics, this work is expected to open distinct avenues for producing key intermediates of great value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call