Abstract

The preparation of hierarchical porous monolithic column with high covalent organic frameworks (COF) loading and micropores accessibility is challenging due to the easy aggregability and sedimentation of COFs. Herein, a novel strategy based on high internal phase emulsion (HIPE) polymerization was proposed for preparing COF hybrid capillary monolithic column with hierarchical porosity. COFs with different frameworks including imine COFs (COF-OMe, COF-F and COF-SH), triazine COF (CTF-1) and boron-based COF (COF-5) were selected to investigate the universality of the preparation strategy. The presence of COF in the monolithic capillary was confirmed by scanning electron microscope, X-ray diffraction and fourier transform infrared spectroscopy. Nitrogen adsorption/desorption experiments and thermogravimetric analysis showed that the prepared COF hybrid monolithic capillary exhibited high COF loading (e.g., 28.7% for COF-SH) and accessibility (e.g., 98.5% for COF-SH), mainly due to the thin walls of void-window structures originated from polymerization of HIPE. The successful preparation of water-stable COF-F, COF-OMe, COF-SH and CTF-1 hybrid monolithic columns demonstrated the proposed synthesis strategy is universal to water-stable COF without tedious optimization of dispersion system, effectively avoiding the sedimentation of COF in pre-polymerization solution. Then, the sulfhydryl-modified COF hybrid polymer (poly(COF-SH-HIPE)) monolithic column was evaluated for the extraction of heavy metal ions, and a method based on poly(COF-SH-HIPE) monolithic capillary microextraction on-line coupled with inductively coupled plasma mass spectrometry detection was developed for analysis of trace Cd, Hg and Pb in human fluid samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.