Abstract

The accurate identification of energetic heterocyclic compounds (EHCs) is of great significance in munition assessment, environmental monitoring, and biosafety but remains largely underexplored. Herein, a covalent organic frameworks-based fluorescence sensor array (COFx sensor array) for efficient screening of EHCs is reported. The topologies of the COFs were rationally designed by modulating the pore sizes and linkage strategies to achieve the simplified sensor array. Eighteen EHC representatives, including single-, dual-, and three-ring EHCs with multivariate substructures, were successfully discriminated ranging from 10 μM to 1 mM. The sensor array showed robust selectivity against a wide range of interferences. The quantitative structure-activity relationship (QSAR) analysis has been conducted for the mechanistic study of the sensor array. Three multiple linear regression models have been established using molecular descriptors to evaluate and predict Stern-Volmer coefficient values, achieving explicit correlation between EHC structures and the signal outputs of the sensor array. Five molecular descriptors are retained to reveal the governing factors of the sensor array resolution. The QSAR analysis facilitates the design and development of the COFx sensor array, offering a new approach for customized multivariate analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.