Abstract
The large-scale applications of energy storage system via lithium-ion batteries (LIBs) put forward demands for high capacity, high safety, and low cost of materials. Covalent organic polymers have attracted extensive attention because of their high capacity, flexible structural design, high safety, abundance, and low cost. Here, 2,3,5,6-tetraamino-p-benzoquinone and hexaketocyclohexane octahydrate were chosen as monomers to construct the covalent organic framework (TH-COF) cathode materials with active C=O and C=N groups. The TH-COF was further composed with reduced graphene oxide (rGO) and the prepared TH-COF/rGO cathode provided a capacity of 135 mAh g−1 after 600 cycles at 1 C current density. In addition, after 100 cycles, the cathode delivered capacities of 118 and 73 mAh g−1 at the high current densities of 5 C and 20 C, respectively, displaying superior rate performances. The TH-COF/rGO electrode exhibited high capacity and stability, making it a promising cathode material for the next generation LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.