Abstract

Covalent organic frameworks (COFs), as a novel porous organic polymer with periodic and highly ordered structure, are ideal carrier matrix for metal nanoparticles due to high specific surface area, good stability, controllable pore size, and structural tunability. In this work, COFs are used as a carrier to in-situ grow ultrasmall rhodium nanoparticles (Rh NPs, ∼2.4 nm), which are uniformly distributed in the pores and on the surfaces of the COFs. The formed composite (COF-Rh) shows excellent peroxidase-mimetic activity benefiting from the good catalytic activity of ultrafine and highly dispersed Rh NPs as well as the high affinity of COFs to organic molecules (i.e., catalytic substrates). Cysteine (Cys) can inhibit the peroxidase-like activity of COF-Rh due to the interaction of -SH in Cys with Rh and the reduction of oxidized peroxidase substrate by Cys. By regulating the peroxidase-like activity of the system, a colorimetric method is successfully developed for Cys detection. Using smartphone as a readout, a portable strategy is further proposed for rapid and visual sensing of Cys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call