Abstract

The construction of heteroatom-doped metal-free carbon catalysts with bifunctional catalytic activity for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is highly desired for Zn-air batteries, but remains a great challenge owing to the sluggish kinetics of OER and ORR. Herein, a self-sacrificing template engineering strategy was employed to fabricate fluorine (F), nitrogen (N) co-doped porous carbon (F-NPC) catalyst by direct pyrolysis of F, N containing covalent organic framework (F-COF). The predesigned F and N elements were integrated into the skeletons of COF precursor, thus achieving uniformly distributed heteroatom active sites. The introduction of F is beneficial for the formation of edge-defects, contributing to the enhancement of the electrocatalytic activity. Attributing to the porous feature, abundant defect sites induced by F doping, as well as the strong synergistic effect between N and F atoms to afford a high intrinsic catalytic activity, the resulting F-NPC catalyst exhibits excellent bifunctional catalytic activities for both ORR and OER in alkaline mediums. Furthermore, the assembled Zn-air battery with F-NPC catalyst shows a high peak power density of 206.3 mW cm−2 and great stability, surpassing the commercial Pt/C + RuO2 catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.