Abstract

Influenza A (H1N1) virus is a highly contagious respiratory disease that causes severe illness and death. Vaccines and antiviral drugs are limited by viral variation and drug resistance, so developing efficient integrated theranostic options appears significant in anti-influenza virus infection. In this study, we designed and fabricated covalent organic framework (COF) based theranostic platforms (T705@DATA-COF-Pro), which was composed of an RNA polymerase inhibitor (favipiravir, T705), the carboxyl-enriched COF (DATA-COF) nano-carrier and Cy3-labeled single DNA (ssDNA) probe. The multi-porosity COF core provided an excellent micro-environment and smooth delivery for T705. The ssDNA probe coating bound to the nucleic acids of H1N1 selectively, thus controlling drug release and allowing fluorescence imaging. The combination of COF and probe triggered the synergism, promoting drug further therapeutic outcomes. With the aid of T705@DATA-COF-Pro platforms, the H1N1-infected mouse models lightly achieved diagnosis and significantly prolonged survival. This research underscores the distinctive benefits and immense potential of COF materials in nano-preparations for virus infection, offering novel avenues for the detection and treatment of H1N1 virus infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.