Abstract

Covalent organic frameworks (COFs) have emerged as a promising platform of materials for solid-state battery electrolytes due to their porous and robust structures, and their special spaces such as 1D and 3D, as well as their ability to be modified with functional groups. This review focuses on the use of COF materials in solid-state batteries and explores the various types of bonds between building blocks and the impact on key properties such as conductivity, transfer number, and electrochemical stability. The aim is to provide an overview of the current state of COF-based electrolytes for solid-state batteries and to highlight the prospects for future development in this field. The use of COF materials in solid-state batteries has the potential to overcome limitations such as low theoretical energy density, limited temperature stability, and the risk of fire and explosion associated with traditional liquid electrolyte batteries. By providing a more in-depth understanding of the potential applications of COF-based electrolytes in solid-state batteries, this review seeks to pave the way for further advancements and innovations in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.