Abstract

Two major products (adducts A and B) from the reaction of 2-deoxyguanosine (dGuo) with 13-hydroperoxylinoleic acid were detected by liquid chromatography/mass spectrometry (LC/MS). Adducts A and B were also the major products formed enzymatically when dGuo was incubated in the presence of linoleic acid and lipoxygenase. The mass spectral fragmentation patterns of adducts A and B suggested that unique modifications to the nucleoside had been introduced. This resulted in the characterization of a novel bifunctional electrophile, 4-oxo-2-nonenal, as the principal breakdown product of linoleic acid hydroperoxide. In subsequent studies, adduct A was found to be a substituted ethano dGuo adduct that was a mixture of three isomers (A(1)-A(3)) that all decomposed to form adduct B. Adduct A(1) was the hemiacetal form of 3-(2-deoxy-beta-D-erythropentafuranosyl)-3,5,6, 7-tetrahydro-6-hydroxy-7-(heptane-2-one)-9H-imidazo[1, 2-alpha]purine-9-one. Adducts A(2) and A(3) were the diastereomers of the open chain ketone form. Adduct B was the substituted etheno dGuo adduct, 3-(2-deoxy-beta-D-erythropentafuranosyl)imidazo-7-(heptane-2 -one)-9-hydroxy[1,2-alpha]purine, the dehydration product of adducts A(1)-A(3). Identical covalent modifications to dGuo were observed when calf-thymus DNA was treated with 4-oxo-2-nonenal. These data illustrate the diversity of reactive electrophiles produced from the peroxidative decomposition of lipids and have implications in fully assessing the role of lipid peroxidation in mutagenesis and carcinogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.