Abstract

Single wall carbon nanotubes (SWCNTs) were exposed to gamma radiation, absorbing the doses of 25, 50 and 100 kGy in aqueous environment. After the irradiation treatment, the changes in the structure were studied using Fourier Transform Infrared and Raman spectroscopy, thermogravimetric analysis and atomic force microscopy. Fourier Transform Infrared Spectroscopy has shown that the irradiation of SWCNTs in aqueous environment leads to covalent functionalization of SWCNTs. The irradiation of water leads to its radiolysis and the formation of free radical species of different types. These species react with nanotube sidewalls and in such way carboxylic and hydroxylic groups are covalently bonded to the sidewalls of SWCNTs. Thermogravimetric analysis was used to estimate the total amount of covalently bonded groups. The highest ratio of covalently bonded groups appears in nanotubes irradiated with the 100 kGy dose. Raman spectroscopy proves that the increase in irradiation doses leads to an increase of structural disorder of SWCNTs, presumably in the form of defects in carbon nanotube walls. Examination of ID to IG ratio shows a three times larger degree of structural disorder after the irradiation treatment with 100 kGy. The analysis of carbon nanotube Raman spectra RBM bands determined the presence of both semiconducting and metallic carbon nanotubes after gamma irradiation treatment. These measurements prove that gamma irradiation treatments have a nonselective effect regarding different chirality and therefore conductance of nanotubes. Atomic force microscopy shows a significant carbon nanotube shortening as the effect of gamma radiation treatment. Nanotubes with length between 500 nm and 1 ?m are predominant.

Highlights

  • Raman spectra of pristine (1, –) and nanotubes irradiated in water at the dose of 25 (2, ), 50 (3, ) and 100 kGy (4, )

  • RBM band of Raman spectra: a) pristine SWCNT; b) nanotubes irradiated in water at the of 25 (1, –), 50 (2, ) and 100 kGy (3, )

  • AFM images of a) pristine and b) nanotubes irradiated in water at a dose of 50 kGy and than dispersed in 1,2-dichlorobenzene

Read more

Summary

NAUČNI RAD

Otkriće ugljeničnih nanotuba usledilo je neposredno nakon sinteze fulerena u makroskopskim količinama [1,2]. S.P. JOVANOVIĆ i sar.: MODIFIKACIJA JEDNOSLOJNIH UGLJENIČNIH NANOTUBA GAMA ZRAČENJEM. Kovalentna modifikacija ugljeničnih nanotuba može se postići primenom snopa elektrona visokih energija [10,14,15,] i jonskim bombardovanjem [16,17]. Primenom snopa elektrona visokih energija na jednoslojne nanotube postignuto je njihovo skraćivanje [18], ali dolazi i do građenja kovalentnih veza između pojedinačnih nanotuba unutar snopa nanotuba usled čega oni postaju ojačani [10]. Efekti gama zračenja na strukturu jednoslojnih ugljeničnih nanotuba nisu detaljno ispitani i do danas je urađeno svega nekoliko istraživanja u ovoj oblasti. Ugljenične nanotube su, nakon zračenja, ispitivane Furijeovom infracrvenom spektroskopijom kako bi se utvrdile eventualne strukturne promene. Mikroskopijom atomskih sila su analizirane promene u dimenzijama nanotuba, nakon gama zračenja različitih doza

EKSPERIMENTALNI DEO
REZULTATI I DISKUSIJA
SUMMARY
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call