Abstract

The electronic structure of the RFe6Ge6 compounds (R = Sc, Lu, Ti, Zr, Hf and Nb) of HfFe6Ge6-type structure has been studied using the muffin-tin Korringa-Kohn-Rostoker method in a non- relativistic approach. The chemical bonding is analyzed based on the l-decomposed site projected densities of states. Spin-dependent changes in the R nd- Fe 3d covalent bond are shown to be responsible for the experimentally observed rise in the Fe moment and hyperfine field upon increasing the R valency. The limited quantitative agreement between theoretical and experimental values is interpreted as being due to a non-negligible orbital moment and to a significant asphericity in the spin density at the iron site. The theoretical results also forecast a strong increase of the Ge(2e) transferred hyperfine field with the R valency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.