Abstract

In this study, a potential of covalent linkage approach for developing active edible coatings was examined. Vanillin and trans-cinnamaldehyde were bound to chitosan by Schiff base reaction and reductive amination. The modified polysaccharides were comprehensively characterized and applied as active coatings on fresh-cut melon. The covalent linkage allowed overcoming solubility problems with the lipophilic vanillin and cinnamaldehyde and neutralizing their volatility, producing well-adhered coatings that enhanced fruit quality and storability without sensorial impairment. The attached hydrophobic moieties also provided new polysaccharides with self-assembling ability. Their aggregates were loaded with antimicrobial citral and added to mandarin juice, resulting in up to 6 log CFU/mL microbial count reduction. Thus, the covalent linkage concept offers several advantages, especially when hydrophobic or volatile active agents are used. Further developed, it may become a safe and effective tool for the formation of advanced active edible coatings and delivery vehicles for direct applications on food products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.