Abstract

Using the concept of covalent layer-by-layer assembly (covalent LbL), used until now for the elaboration of films from polymers or dendrimers, we have constructed hybrid organic/inorganic surfaces by alternating different layers of amino-functionalized silica nanoparticles (295 nm diameter) and epoxy-functionalized smaller silica nanoparticles (20 nm diameter). The so-realized macromolecular edifice leads to a hierarchical integration of nanoscale textures. Then hydrophobization of the last layer of amino-functionalized silica particles was carried out by grafting a new designed highly fluorinated aldehyde, creating a monomolecular layer via the formation of an imine function. Five highly fluorinated surfaces were built, and their water-repellent abilities were directly correlated to the surface topologies (i.e., the number of layers of silica nanoparticles and their organization on the glass support). The hydrophobicity increased with the number of layers and stable highly water-repellent surfaces (static contact angle with water of 150+/-3 degrees and a contact angle hysteresis of 12 degrees) were obtained with the alternation of nine layers. This result demonstrates the possibility to construct covalent LbL edifices with functionalized silica nanoparticles of different sizes and open this field for the elaboration of responsive, sensing, and therapeutic surfaces with improved film stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call