Abstract

Covalent irreversible inhibitors can successfully treat antibiotic-resistant infections by targeting serine β-lactamases. However, this strategy is useless for New Delhi metallo-β-lactamase (NDM), which uses a non-covalent catalytic mechanism and lacks an active-site serine. Here, NDM-1 was irreversibly inactivated by three β-lactam substrates: cephalothin, moxalactam, and cefaclor, albeit at supratherapeutic doses (e.g., cefaclor KI =2.3 ± 0.1 mM; k(inact) =0.024 ± 0.001 min(-1)). Inactivation by cephalothin and moxalactam was mediated through Cys208. Inactivation by cefaclor proceeded through multiple pathways, in part mediated by Lys211. Use of a cefaclor metabolite enabled mass spectrometric identification of a +346.0735 Da covalent adduct on Lys211, and an inactivation mechanism is proposed. Lys211 was identified as a promising "handhold" for developing covalent NDM-1 inhibitors and serves as a conceptual example for creating covalent inhibitors for enzymes with non-covalent mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call