Abstract

A technique of covalent immobilization of urease on polysiloxane templates, involving the sol-gel method, based on the use of crosslinking reagents (such as glutaraldehyde and Ellman's reagent) has been proposed. Urease, covalently grafted onto the surface of a poly(3-mercaptopropyl)siloxane template, was shown to retain its activity (67-84%) and stability (a decrease of 10% was observed over a period of 300 days). Urease adsorbed onto the poly(3-mercaptopropyl)siloxane template exhibited a higher activity than the native enzyme. The 3-mercaptopropyl groups of the polysiloxane template could be brought into the vicinity of the active metal center of the adsorbed urease and start acting as proton donors, thereby increasing the rate of the reaction catalyzed by the enzyme. Covalent immobilization of urease onto a 3-aminopropyl-containing polysiloxane template was shown to be less efficient, because it resulted in considerable losses of the activity of the enzyme. Conversely, urease adsorbed onto this template exhibited a high activity (60-86%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.