Abstract
ABSTRACTPoly(N‐isopropylacrylamide‐co‐acrylic acid) (P(NIPAM‐co‐AA)) microspheres with a high copolymerized AA content were fabricated using rapid membrane emulsification technique. The uniform size, good hydrophilicity, and thermo sensitivity of the microspheres were favorable for trypsin immobilization. Trypsin molecules were immobilized onto the microspheres surfaces by covalent attachment. The effects of various parameters such as immobilization pH value, enzyme concentration, concentration of buffer solution, and immobilization time on protein loading amount and enzyme activity were systematically investigated. Under the optimum conditions, the protein loading was 493 ± 20 mg g−1 and the activity yield of immobilized trypsin was 155% ± 3%. The maximum activity (Vmax) and Michaelis constant (Km) of immobilized enzyme were found to be 0.74 μM s−1 and 0.54 mM, respectively. The immobilized trypsin showed better thermal and storage stability than the free trypsin. The enzyme‐immobilized microspheres with high protein loading amount still can show a thermo reversible phase transition behavior. The research could provide a strategy to immobilize enzyme for application in proteomics. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43343.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.