Abstract

Bacterial infection represents a major cause of implant failure in dentistry. A common approach to overcoming this issue and treating peri-implant infection consists in the use of antibiotics. However, the rise of multidrug-resistant bacteria poses serious concerns to this strategy. A promising alternative is the use of antimicrobial peptides due to their broad-spectrum activity against bacteria and reduced bacterial resistance responses. The aim of the present study was to determine the in vitro antibacterial activity of the human lactoferrin-derived peptide hLf1-11 anchored to titanium surfaces. To this end, titanium samples were functionalized with the hLf1-11 peptide either by silanization methods or physical adsorption. X-ray photoelectron spectroscopy analyses confirmed the successful covalent attachment of the hLf1-11 peptide onto titanium surfaces. Lactate dehydrogenase assay determined that hLf1-11 peptide did not affect fibroblast viability. An outstanding reduction in the adhesion and early stages of biofilm formation of Streptococcus sanguinis and Lactobacillus salivarius was observed on the biofunctionalized surfaces compared to control non-treated samples. Furthermore, samples coated with the hLf1-11 peptide inhibited the early stages of bacterial growth. Thus, this strategy holds great potential to develop antimicrobial biomaterials for dental applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.