Abstract

Microscale droplets of thermotropic liquid crystals (LCs) suspended in aqueous media (e.g., LC-in-water emulsions) respond sensitively to the presence of contaminating amphiphiles and, thus, provide promising platforms for the development of new classes of droplet-based environmental sensors. Here, we report polymer-based approaches to the immobilization of LC droplets on surfaces; these approaches introduce several new properties and droplet behaviors and thus also expand the potential utility of LC droplet-based sensors. Our approach exploits the properties of microscale droplets of LCs contained within polymer-based microcapsule cages (so-called "caged" LCs). We demonstrate that caged LCs functionalized with primary amine groups can be immobilized on model surfaces through both weak/reversible ionic interactions and stronger reactive/covalent interactions. We demonstrate using polarized light microscopy that caged LCs that are covalently immobilized on surfaces can undergo rapid and diagnostic changes in shape, rotational mobility, and optical appearance upon the addition of amphiphiles to surrounding aqueous media, including many useful changes in these features that cannot be attained using freely suspended or surface-adsorbed LC droplets. Our results reveal these amphiphile-triggered orientational transitions to be reversible and that arrays of immobilized caged LCs can be used (and reused) to detect both increases and decreases in the concentrations of model contaminants. Finally, we report changes in the shapes and optical appearances of LC droplets that occur when immobilized caged LCs are removed from aqueous environments and dried, and we demonstrate that dried arrays can be stored for months without losing the ability to respond to the presence of analytes upon rehydration. Our results address practical issues associated with the preparation, characterization, storage, and point-of-use application of conventional LC-in-water emulsions and provide a basis for approaches that could enable the development of new "off-the-shelf" LC droplet-based sensing platforms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.