Abstract

A generic approach for flavoenzyme immobilization was developed in which the flavin cofactor is used for anchoring enzymes onto the carrier. It exploits the tight binding of flavin cofactors to their target apo proteins. The method was tested for phenylacetone monooxygenase (PAMO) which is a well-studied and industrially interesting biocatalyst. Also a fusion protein was tested: PAMO fused to phosphite dehydrogenase (PTDH-PAMO). The employed flavin cofactor derivative, N6-(6-carboxyhexyl)-FAD succinimidylester (FAD*), was covalently anchored to agarose beads and served for apo enzyme immobilization by their reconstitution into holo enzymes. The thus immobilized enzymes retained their activity and remained active after several rounds of catalysis. For both tested enzymes, the generated agarose beads contained 3 U per g of dry resin. Notably, FAD-immobilized PAMO was found to be more thermostable (40% activity after 1h at 60°C) when compared to PAMO in solution (no activity detected after 1h at 60°C). The FAD-decorated agarose material could be easily recycled allowing multiple rounds of immobilization. This method allows an efficient and selective immobilization of flavoproteins via the FAD flavin cofactor onto a recyclable carrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.