Abstract

AbstractHexagonal boron nitride (h‐BN) is a van der Waals (vdW) ultrawide bandgap semiconductor with high band‐edge absorption coefficient and chemical/thermal resistance, demonstrating great potential for vacuum ultraviolet (VUV) and UV‐C detection. Hitherto, most of their prevailing applications have exploited epitaxial films and multilayers either grown on substrates or transferred, which tend to form energy‐favorable noncovalent vdW epitaxy. Here, an alternative heteroepitaxy of 2‐inch h‐BN is reported with desirable thickness and vertically aligned vdW layers covalently bonded to sapphire, enabled by activating the inert substrate surface using ion impingement during deposition and the dislocation‐mediated epitaxial transition. The fabricated photodetectors allow efficient photon absorption and carrier collection using a simple planar device design, showing excellent VUV/UV‐C detection performance with ultrafast response of 270 ns/60 µs (rise/decay) and remarkable operating stability until 500 °C. This covalent heteroepitaxy of wafer‐scale h‐BN opens new avenues for optoelectronics and electronics significant to harsh environment applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.