Abstract

Functionalization of nanotubes with donor and acceptor partners by the Bingel reaction leads to the formation of charge-transfer dyads, which can operate in organic photovoltaic devices. In this work, we theoretically examine the mechanism of the Bingel reaction for the (6,5)-chiral, (5,5)-armchair, and (9,0)-zigzag single-walled carbon nanotubes (SWCNTs), and demonstrate that the reaction is regioselective and takes place at the perpendicular position of (6,5)- and (5,5)-SWCNTs, and the oblique position of (9,0)-SWCNT. Further, we design computationally the donor-acceptor complexes based on (6,5)-SWCNT coupled with partners of different electronic nature. Analysis of their excited states reveals that efficient photoinduced charge transfer can be achieved in the complexes with π-extended analogue of tetrathiafulvalene (exTTF), zinc tetraphenylporphyrin (ZnTPP), and tetracyanoanthraquinodimethane (TCAQ). The solvent can significantly affect the population of the charge-separated states. Our calculations show that electron transfer (ET) occurs in the normal Marcus regime on a sub-nanosecond time scale in the complexes with exTTF and ZnTPP, and in the inverted Marcus regime on a picosecond time scale in the case of the TCAQ derivative. The ET rate is found to be not very sensitive to the degree of functionalization of the nanotube.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call