Abstract

Although recent studies in the field of nanomaterials have allowed the realization of highly sensitive sensors, research regarding new types of functionalization of nanostructures to reach high selectivity are still missing. Here, a simple electronic device based on polycrystalline silicon (poly-Si) nanoribbons used for lead detection is presented. This device is functionalized by reduction of aryl diazonium salts in order to detect heavy metals. The effectiveness of the grafting process and thickness homogeneity of the coating layer were evaluated by XPS and NanoSIMS techniques. The preconcentration of lead (Pb2+) at the surface of the functionalized nanostructures was substantially verified. Finally, electrical characterization of the resistors based on the functionalized nanoribbons, showed that the sensitivity to these species is increased in the concentration ranging from 10−7 to 10−5 mol L−1. This technique could pave the way for use of complexing agents to enhance heavy metal detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.