Abstract

A biosensor based on AuNP modified GC electrodes has been developed for direct detection of methyl parathion. AuNP can be introduced to mixed monolayers of aryldiazonium salt modified GC electrodes by Au–C bonding through aryldiazonium salt chemistry, which provides a stable interface showing efficient electron transfer between biomolecules and electrodes. PEG molecules were introduced to the interface to resist non-specific protein adsorption. AuNP surfaces were further modified with 4-carboxyphenyl followed by covalent immobilization of methyl parathion hydrolase (MPH), a specific biocatalytic enzyme to methyl parathion. Exposure of this interface to methyl parathion resulted in a change in amperometric signal due to the MPH catalytic hydrolysis of methyl parathion producing electroactive compound 4-nitrophenol. This biosensor shows high selectivity, specificity, reproducibility and stability, and is functional for the detection of methyl parathion in real samples. The linear range for detection of methyl parathion is 0.2–100ppb with a detection limit of 0.07ppb in 0.1M phosphate buffer at pH 7.0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call