Abstract

A new method has been developed to couple a lysine-reactive cross-linker to the 4-thiouridine residue at position 8 in the primary structure of the Escherichia coli initiator methionine tRNA (tRNAfMet). Incubation of the affinity-labeling tRNAfMet derivative with E. coli methionyl-tRNA synthetase (MetRS) yielded a covalent complex of the protein and nucleic acid and resulted in loss of amino acid acceptor activity of the enzyme. A stoichiometric relationship (1:1) was observed between the amount of cross-linked tRNA and the amount of enzyme inactivated. Cross-linking was effectively inhibited by unmodified tRNAfMet, but not by noncognate tRNAPhe. The covalent complex was digested with trypsin, and the resulting tRNA-bound peptides were purified from excess free peptides by anion-exchange chromatography. The tRNA was then degraded with T1 ribonuclease, and the peptides bound to the 4-thiouridine-containing dinucleotide were purified by high-pressure liquid chromatography. Two major peptide products were isolated plus several minor peptides. N-Terminal sequencing of the peptides obtained in highest yield revealed that the 4-thiouridine was cross-linked to lysine residues 402 and 439 in the primary sequence of MetRS. Since many prokaryotic tRNAs contain 4-thiouridine, the procedures described here should prove useful for identification of peptide sequences near this modified base when a variety of tRNAs are bound to specific proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call