Abstract
Progress in biomedical imaging depends on the development of bioprobes with a high sensitivity and stability. Fluorescent silica nanoparticles (NPs) covalent conjugation of avidin has been proposed for cancer cells imaging by fluorescence microscopy. Uniform silica NPs were prepared using water-in-oil (W/O) microemulsion methods and primary amine groups were introduced onto the surface of the NPs by condensation of tetraethyl orthosilicate (TEOS). Optically stable organic dyes, tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate (Rubpy), were doped inside the silica NPs. The amine functions were transferred to carboxyl groups coupled with a linker elongation. Avidin was immobilized at the surface of the NPs by covalent binding to the carboxyl linkers. The binding capacity of the avidin-covered NPs for ligand biotin was quantified by titration with biotin(5-fluorescein) conjugate to 1.25 biotin binding sites/100nm2. We used biotinylated antibody and cell recognition by fluorescence microscopy imaging technique. The lung carcinoma cells were identified easily with high efficiency using these antibody-coated NPs. By comparison with fluorescein isothiocyanate (FITC), dye-doped silica NPs display dramatically increased stability of fluorescence as well as photostability, as compared to the common organic dye, when under continuous irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.