Abstract
An important prerequisite for molecular shuttle-based functional devices is the development of adequate linker chemistries to load and transport versatile cargoes. Copper-free "click chemistry" has not been applied before to covalently load cargo onto molecular shuttles propelled by biological motors such as kinesin. Due to the high biocompatibility and bioorthogonality of the strain-promoted azide-alkyne cycloaddition, this approach has pronounced advantages compared to previous methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.