Abstract

This paper reports on the development of immunosensors based on commercially available surface acoustic wave (SAW) devices working at 380 MHz. Approaches for coating the sensor surface with a sensing layer of receptive biomolecules are presented and discussed. It was found that the sensitivity strongly relates to the immobilization method. Additionally, the sensitivity can be influenced by the density of accessible biomolecules on the active sensing area. Usually, by most of the standard immobilization procedures, two-dimensional layers of receptive biomolecules are obtained. We present a three-dimensional layer, which provides a higher absolute amount of recognition molecules. A dextran layer is photoimmobilized to the sensor surface and the recognition molecules are covalently embedded into the dextran matrix. The feasibility of specific immunosensing is investigated using SAW sensors connected to a fluid handling system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call