Abstract

It has been proposed that plasma low density lipoproteins (LDL) undergo oxidative modification before they can produce foam cells in atherosclerosis. The oxidation of LDL generates a variety of reactive aldehydic products, which covalently bind to the LDL apolipoprotein B-100 (apoB). In the present study, to investigate the mechanisms contributing to the modification of LDL, we analyzed oxidized cholesteryl esters generated during the autoxidation of LDL and characterized their covalent binding to the lysine residues of LDL apoB. In addition, we raised a monoclonal antibody specific to a lysine-bound oxidized cholesteryl ester and determined its production in human atherosclerotic lesions. The peroxidation of LDL with Cu2+ produced 9-oxononanoylcholesterol (9-ONC) and 5-oxovaleroylcholesterol as the major oxidized cholesteryl esters. We observed that the levels of 9-ONC and 5-oxovaleroylcholesterol peaked at 12 h and significantly decreased thereafter. The reduction of the core aldehyde levels was accompanied by (i) the formation of free 7-ketocholesterol and 7-ketocholesteryl ester core aldehydes and (ii) an increase in the amounts of apoB-bound cholesterol and 7-ketocholesterol, suggesting that the cholesteryl ester core aldehydes were further converted to their 7-ketocholesterol- and apoB-bound derivatives. To detect the protein-bound 9-ONC, we raised the monoclonal antibody 2A81, directed against 9-ONC-modified protein, and found that it extensively recognized protein-bound cholesteryl ester core aldehydes. Agarose gel electrophoresis followed by immunoblot analysis of the oxidized LDL clearly demonstrated the formation of antigenic structures. Furthermore, immunohistochemical analysis of the atherosclerotic lesions from the human aorta showed that immunoreactive materials with mAb 2A81 were indeed present in the lesions, in which the intense immunoreactivity was mainly located in the macrophage-derived foam cells and the thickening neointima of the arterial walls. The results of this study suggest that the binding of cholesteryl ester core aldehydes to LDL might represent the process common to the oxidative modification of lipoproteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.