Abstract
The covalent binding of [ 14C]acetaldehyde to purified beef brain tubulin was characterized. As we have found for several other proteins, tubulin bound acetaldehyde to form both stable and unstable adducts. Unstable adducts (Schiff bases) were stabilized, and rendered detectable, by treating incubated reaction mixtures with the reducing agent sodium borohydride. In short-term incubations, the majority of the adducts formed were unstable, but the percentage of total adducts that were stable gradually increased with time. Stable adduct formation was greatly increased by the inclusion of sodium cyanoborohydride in reaction mixtures (reductive ethylation). When reaction mixtures were submitted to sodium dodecyl sulfate-polyacrylamide gel electrophoresis to separate the α- and β-chains of the heterodimeric tubulin molecule, the α-chain of free tubulin, but not intact microtubules, was the preferential site of stable adduct formation under both reductive and nonreductive conditions. Denaturation studies showed that the native tubulin conformation was necessary for the α-chain to show enhanced reactivity toward acetaldehyde. Competition binding studies showed that α-tubulin could effectively compete with β-tubulin and bovine serum albumin for a limited amount of acetaldehyde. Unstable acetaldehyde adducts with free tubulin or microtubules did not exhibit α-chain selectivity. Analysis of reaction mixtures indicates that lysine residues are the major group of the protein participating in adduct formation. These data indicate that the α-chain of free tubulin is the preferential site of stable acetaldehyde-tubulin adduct formation. Further, these data raise the possibility that α-tubulin may be a selective target for acetaldehyde adduct formation in cellular systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.