Abstract

The effects of different poly(ethylene glycol) (PEG) attachment strategies upon the adhesion of a Gram-negative bacteria (Pseudomonas sp.) was tested. PEG was covalently immobilized, at the lower critical solution temperature of PEG, to a layer of branched poly(ethylenimine) (PEI). PEI was both physically adsorbed to a stainless-steel (SS) substrate and covalently immobilized to a carboxylated poly(ethylene terephthalate) (PET−COOH) surface. On both substrates, the PEI and PEG grafting conditions were optimized so that the levels of surface coverage after each step were maximized and were the same on both substrates, as judged by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Also, ToF-SIMS imaging showed that both substrates were chemically uniform after each surface modification step. Thus, the two surfaces differ only in the mode of attachment of PEI to the substrate. In bacterial adhesion experiments, the optimal SS−PEG surface was not capable of reduci...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.