Abstract

We report here covalent attachment of a catalytically active cobalt complex onto boron-doped, p-type conductive diamond. Peripheral acetylene groups were appended on a cobalt porphyrin complex, and azide-alkyne cycloaddition was used for covalent linking to a diamond surface decorated with alkyl azides. The functionalized surface was characterized by X-ray photoelectron spectroscopy and Fourier transform IR spectroscopy, and the catalytic activity was characterized using cyclic voltammetry and FTIR. The catalyst-modified diamond surfaces were used as "smart" electrodes exhibiting good stability and electrocatalytic activity for electrochemical reduction of CO(2) to CO in acetonitrile solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.