Abstract

Photocatalytic technology is an attractive and promising approach for nitenpyram degradation; however, how to ensure the carrier separation efficiency and catalytic sites exposure is still great challenges. In this study, we construct CdS@MoS2 (CM) nanohybrids with a 3D hierarchical configuration to enhance the separation and transfer efficiency of the photo-induced electron by a covalent-anion-driven self-assembly method. The vertical orientation of MoS2 ultrathin nanosheets not only provides a large specific surface area for the oxidation and reduction reactions but also enables the active edge sites of MoS2 to be maximally exposed. As a result, this structure drastically facilitates the exposure of the catalytic active region and the performance of the carrier transfer and injection into photocatalytic degradation for nitenpyram (NTP). The optimal CdS–MoS2 has an impressive and stable NTP removal efficiency with a high reaction rate constant up to 0.078 min−1, which is 3.25 times higher than that of pure cadmium sulfide. The photocatalytic degradation mechanism and degradation pathway of NTP were presented by synthesizing the results of experimental analysis and density flooding theory (DFT) calculations. In further, for the first time, the cytotoxicity and genotoxicity of NTP on moving bed biofilm reactors (MBBRs) was disclosed and a continuous photocatalytic wastewater pretreatment device based on the CM is proposed for the stable biological nitrogen removal activity of MBBRs, which can degrade more than 80% NTP per hour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.