Abstract

A nanoflare, a conjugate of Au nanoparticles (NPs) and fluorescent nucleic acids, is believed to be a powerful nanoplatform for diagnosis and therapy. However, it highly suffers from the nonspecific detachment of nucleic acids from the AuNP surface because of the poor stability of Au-S linkages, thereby leading to the false-positive signal and serious side effects. To address these challenges, we report the use of covalent amide linkage and functional Au@graphene (AuG) NP to fabricate a covalent conjugate system of DNA and AuG NP, label-rcDNA-AuG. Covalent coating of abundant amino groups (-NH2) onto the graphitic shell of AuG NP efficiently facilitates the coupling with carboxyl-labeled capture DNA sequences through simple, but strong, amide bonds. Importantly, such an amide-bonded nanoflare possesses excellent stability and anti-interference capability against the biological agents (nuclease, DNA, glutathione (GSH), etc.). By accurately monitoring the intracellular miR-21 levels, this covalent nanoflare is able to identify the positive cancer cells even in a mix of cancer and normal cells. Moreover, it allows for efficient photodynamic therapy of the targeted cancer cells with minimized side effects on normal cells. This work provides a facile approach to develop a superstable nanosystem showing promising potential in clinical diagnostics and therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call