Abstract

Covalent adaptable networks (CANs) are being developed as future replacements for thermosets as they can retain the high mechanical and chemical robustness inherent to thermosets but also integrate the possibility of reprocessing after material use. Here, covalent adaptable polyimine-based networks were designed with methoxy and allyloxy-substituted divanillin as a core component together with long flexible aliphatic fatty acid-based amines and a short rigid chain triamine, yielding CANs with a high renewable content. The designed series of CANs with reversible imine functionality allowed for fast stress relaxation and tailorability of the thermomechanical properties, as a result of the ratio between long flexible and short rigid amines, with tensile strength (σb) ranging 1.07-18.7 MPa and glass transition temperatures ranging 16-61 °C. The CANs were subsequently successfully reprocessed up to three times without determinantal structure alterations and retained mechanical performance. The CANs were also successfully chemically recycled under acidic conditions, where the starting divanillin monomer was recovered and utilized for the synthesis of a recycled CAN with similar thermal and mechanical properties. This promising class of thermosets bearing sustainable dynamic functionalities opens a window of opportunity for the progressive replacement of fossil-based thermosets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call