Abstract

The reaction of formohydroxamic acid [NH(OH)CHO, FHA] with Pu(III) should result in stabilization of the trivalent oxidation state. However, slow oxidation to Pu(IV) occurs, which leads to formation of the dimeric plutonium(IV) formohydroxamate complex Pu2(FHA)8. In addition to being reductants, hydroxamates are also strong π-donor ligands. Here we show that formation of the Pu2(FHA)8 dimer occurs via covalency between the 5f orbitals on plutonium and the π* orbitals of FHA(-) anions, which gives rise to a broad and intense ligand-to-metal charge-transfer feature. Time-dependent density functional theory calculations corroborate this assignment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call